Two of the biggest problems faced by deflationary theories of truth are these: First, how can such views, drawing on such limited resources as they do, provide an adequate and meaningful definition of truth? And second, how can such views be reconciled with our intuition that truth involves a correspondence between thought and world? Christopher Hill has recently claimed that a broadly deflationary view of truth he calls substitutionalism can solve both problems. In this discussion, I argue that Hill’s theory comes up lacking on both counts.

A century ago, debates over truth were mostly debates over whether its nature consists in correspondence, coherence, or pragmatic utility. Things have changed. Today, the field is just as much concerned with whether truth even has a nature as it is with what that nature is. Accordingly, philosophers working on truth fall into two broadly defined camps: those who defend one version or another of a robust metaphysical theory of truth, and the deflationists, who think that truth is either not a property or at least not a substantive property. The latter sort of position is increasingly popular, and today it might even be said to be the received view.

Two of the biggest problems faced by deflationary theories of truth are these: First, how can such views, drawing on such limited resources as they do, provide an adequate and meaningful definition of truth? And second, how can such views be reconciled with our intuition that truth involves a correspondence between thought and world? Christopher Hill has recently claimed that a broadly deflationary view of truth he calls substitutionalism can solve both problems. In this discussion, I argue that Hill’s theory comes up lacking on both counts.

1. Hill’s version of deflationism is called substitutionalism. Substitutionalism is deflationary in that «truth is philosophically and empirically neutral, in the sense that its use carries no substantive and empirical commitments» (p. 4). The view has three distinctive features. First, it concerns the truth of thoughts or propositions and constituents of thoughts. Thus, in a sense, substitutionalism is much more

rooted in the philosophy of mind than in the philosophy of language. Second, Hill argues that propositional truth and other semantic concepts can be ‘reduced’ to substitutional quantification (p. 23). Third, he claims he can pay due homage to the intuitions behind the correspondence theory of truth without abandoning deflationism. As such, it can be understood, he argues, as a sort of compromise between deflationary views and correspondence theories.

Hill’s account of semantic concepts comes in both a simple and extended form. Simple substitutionalism is the view that the concept of truth can be explicitly defined as follows, (where Σ stands for substitutional quantification)

(S): For any x, x is true if and only if (Σp) (x = the thought that p) and p).

This is all that needs to be said about the concept of truth; in particular, no account of correspondence or the like is the needed to define that concept. Thus we arrive at the first of three apparent advantages substitutionalism has over its rivals: it gives a truly deflationary but nonetheless reductive definition of the concept of truth. And not just truth – it also claims that it can give similar definitions of other key semantic concepts, like denotation and reference. More traditional accounts, such as the so-called redundancy theory, have long had trouble offering such a definition because using ordinary objectual quantification, it is hard to see how one could convert

(T): The proposition that p is true if and only p,

into a suitable explicit definition. Consider for example, the natural suggestion:

(RT): x is a true proposition if and only if (∃x) (x = the proposition that p & p).

This sort of position was briefly considered by Ramsey. But as he noted himself, the phrase “‘and p’ sounds like nonsense because it seems to have no verb”. The problem, in short, is that if we interpret the quantifier in the normal way, “x = the proposition that p & p” is just not grammatically formed; “p” can’t serve by itself as a conjunct here. Hence the virtue of substitutional quantification, which is literally tailor-made to get around this problem. More on this in a moment.

The second advantage of (S) is connected to the first. Unlike Paul Horwich’s minimalist theory, substitutionalism avoids Gupta’s well-known generalization problem. Horwich’s own theory gets around the “no explicit definition” problem we just discussed by simply abandoning the attempt to give one. Instead, Horwich takes our concept of truth to implicitly defined by all the non-paradoxical instances of (T); these instances form the axioms of what Horwich calls the minimal theory.

Our grasp of the concept consists in our disposition to accept without evidence every instance of that schema. This all we need to explain all the facts about truth. Gupta has famously pointed out that this is not so. As Gupta notes, many of the propositions we accept a priori that involve the concept of truth are generalizations, such as:

- Only propositions are true
- Every instance of if p then p is true.

Presumably, the minimalist should be able to derive these propositions from the axioms of its theory. But this is not possible. First, the axioms of the minimalist theory contain no universal generalizations about truth. They only explain the conditions under which particular propositions are true. Second, one can’t validly infer a generalization from any consistent list of particular propositions. But third, the examples above are universal generalizations. This is a big problem for minimalism. And thus (S) would seem to have the advantage. For it is a generalization. And as Hill shows, we not only can derive every instance of (T) from (S), we can use (S) to help us derive other generalizations involving truth.

Those are the pros of substitutionalism. The con is that definitions like (S) face a well-known problem. The normal way of explaining the meaning of $(\Sigma p)(\ldots p\ldots)$ is to say any thought of that form is true «if and only if there is a thought T that results from replacing occurrences of the propositional variable p in the matrix $(\ldots p\ldots)$ by T is true» (p. 18). But as Hill notes, this statement of the truth conditions for $(\Sigma p)(\ldots p\ldots)$ invokes the concept of truth. Hence if that is what our understanding of substitutional quantification amounts to, then the right-hand side of (S) presupposes an understanding of truth, and so can’t be used to explicitly define it.

Hill’s solution to this problem is to explain the substitutional quantifiers by appeal to certain rules of inference. He notes, «it is common practice in logic to define logical operators by describing their logical behavior» (p. 18). By doing similarly with substitutional quantifiers, Hill argues, he can ‘capture all of the inferences involving them that we are prepared to endorse’ (Ibid.). Accordingly, he gives rules for Universal elimination, Universal Introduction, Existential Introduction and Existential Elimination. In other words, simple substitutionalism gives an explicit definition of truth in terms of substitutional quantification but an implicit or ‘use’ definition of substitutional quantification in terms of our commitment to certain rules of inference.

I wonder how much ground is gained by this move, however. The problem, as I see it, is that according to Hill, simple substitutionalism ‘maintains that the content of the concept of truth is fully captured by’ (S). Presumably this means that the content of the concept is stated on the right-hand side of the biconditional. But again, what content is that exactly? By saying this, I am not saying I don’t under-
stand what ‘true’ means. I think I do understand the concept expressed by that word. I am just not sure it is the concept expressed on the right hand side of (S), for I am not sure what is expressed there unless I invoke the notion of truth to understand the quantifier. To grasp this concept without doing so, we are told to refer to the relevant inference rules. Is this good enough? Well, as Peter van Inwagen has noted, we can do better in the case of objectual quantification. There, we can say what an existentially quantified phrase means: it means that there exists an x such that… No comparable explanation that does not already invoke the concept of truth can be given here. And one wonders why not.

Of course, one might point out that on Hill’s view substitutional quantification is, in a certain sense, primitive. The quantifier ‘(Σp)(…p…)’, the view suggests, is like the conjunction sign ‘&’. It cannot be non-circularly defined except in terms of its inferential role. I worry, however, that applied in the present case, this gets things the wrong way around. I certainly can see some sense in thinking that the concept of truth is primitive in the sense that it cannot be non-circularly reductively defined in terms of anything else. But that is not what is at issue. At issue is whether it is legitimate to reductively define the concept of truth in terms of substitutional quantification, and then claim that substitutional quantification is primitive in that it can only be explicated in terms of various inference rules. Compare this with the following reductive analysis of the concept existence: “x exists iff ∃y (y = x)”, where I then go on to define “∃” in terms of certain standard rules of inference. The obvious problem with such a proposal is that we have no reason to think that the concept of existence isn’t already embedded in our understanding of “∃”, and accordingly in our grasp of the corresponding inference rules. If so, the proposal can’t be said to be a non-circular reductive definition of the concept. Similarly, explicating substitutional quantifiers in terms of inference rules is fine, but that explication can be a step in a reductive analysis of truth only if we are assured that our concept of truth isn’t already embedded within our grasp of the quantifiers and the inferences that explicate them.

Perhaps not everyone will find this problem so troubling. But those that do will see it as undermining the advertised advantages of (S). They were two. The first was that (S), unlike other deflationary theories, gives an explicit reductive definition of truth. But insofar as we are not clear about the meaning of substitutional quantification independently of our grasp of the concept of truth, we are not clear about the meaning of ‘true’ either. The second advantage is a solution to Gupta’s generalization problem. But here too, our amorphous hold on substitutional quantification independently of our grasp of the concept of truth may be problematic. For if we are uncertain about the meaning of ‘true’ we will be uncertain about our use of it in generalizations.

7 The example originates from one given by Marian David, Correspondence and Disquotation, Oxford University Press, Oxford 1994, p. 93.
2. So far I’ve argued that substitutionalism fails to get around the classic definitional problem facing deflationary views of truth. A second classic problem for deflationary views is that they seem to conflict with what we might call the correspondence intuitions about truth, such as the thought that true thoughts correspond to the way things are, or actual states of affairs. The problem is that such intuitions seem part and parcel of our concept of truth, something which it seems that standard deflationary views cannot accept.

Suprisingly, Hill agrees with this criticism of typical deflationary views. Indeed, Hill goes so far as to announce that, taken as an account of our semantic notions in total, substitutionalism is incomplete unless it is expanded in order to explain semantic correspondence, which is the key idea in what he calls our correspondence platitude:

(CP): For any thought x, if there exists a state of affairs y, such that x semantically corresponds to y, then x is true if and only if there exists a state of affairs y such that x semantically corresponds to y and y is actual.

As Hill says, a natural way of explaining semantic correspondence is to say that it is the relation that links the thought that roses are red with the state of affairs that roses are red. Hill therefore suggests we define it as follows:

(SC): For any thought x and any state of affairs y, x bears R to y if and only if (∑p) (x = the thought that p and y = the state of affairs that p).

The rough intuition here, I take it, is that the thought that p semantically corresponds to a state of affairs that p just because they are both...well, related in some way to p. But related how? Hill’s answer is that a thought semantically corresponds to a state of affairs when our ways of referring to them (their ‘canonical names’) are formally related by «having the same thought as a constituent» (p. 49, p. 106).

One worry here is how the canonical name of something like a thought could have that very something as a constituent of itself. After all, the name of something is one thing, the something it is a name of something else. But put that aside. For Hill’s understanding of semantic correspondence fails to accord with the intuitions he is trying to capture with it. According to Hill, thought x semantically corresponds to state of affairs y when our canonical names for x and y bear a certain formal relation. Yet this doesn’t seem to describe a link between states of affairs and thoughts as much as it describes a link between our ways of referring to those states of affairs and thoughts. And that doesn’t seem to be what many have in mind when they think of semantic correspondence, which is typically thought of as an objective relation between the states of affairs and thoughts themselves. Yet a given thought and states of affairs could semantically correspond in Hill’s sense (their names could be formally related in the specified way) even if there were no objectively real relationship between states of affairs and thoughts out in the world.

Hill argues convincingly that the concept of semantic correspondence (understood in the above way) is useful for various theoretical purposes. But those with correspondence intuitions are still apt to feel cheated by Hill’s account. Since again
it is hard to see how extended substitutionalism justifies the intuition that there is a real relation between our thought and world, given that it is consistent with there being no such relation. Of course, my (and Hill’s) deflationary-minded friends may think so much the better – correspondence, sn correspondence, they’ll say. But if so, then why worry about justifying our intuitions in the first place – why not just declare them false – if perhaps practically useful for certain theoretical purposes?

Those with serious correspondence intuitions might balk at Hill’s justification of (CP) for another reason. Hill deduces (CP) from (SC) and a substitutionally quantified version of

(AT): if the state of the affairs that p exists, then the thought that p is true if and only if the state of affairs that p is actual.

Further, (AT), Hill argues, is not a basic fact about truth. Instead it in turn can be derived from substitutional versions of

(T) It is true that p if and only if p

and

(A): if the state of affairs that p exists, then the state of affairs that p is actual if and only if p.

But all by itself, this proof does not show that (AT) is not basic. It would only show that if we had independent evidence to think that (T) is more basic than (AT). But presumably, this will be contested by the correspondence theorist, who sees the link between actuality and truth as deeply ground into our conceptual scheme as (T) – or substitutional quantification, for that matter, on which Hill holds our understanding of (T) itself depends.

3. In conclusion, substitutionalism, even in its extended form, is still an exceedingly deflationary theory of truth. And while it offers some advantages over many of its deflationary rivals, it is not in the end any more successful. It does not tell us that what “true” means or in what our concept of truth consists; and it is inconsistent with the correspondence intuition about truth.

Mychael P. Lynch
University of Connecticut
mplynch@uconn.edu

8 Thanks to Christopher Hill and Jc Beall for useful discussion.